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The chemical synthesis of carbohydrate domains in saccharidesTable 1. Stereoselective Acetal Bond Formation Using Pd

and glycoconjugates such as antibiotics, antitumor agents, glyco-
proteins, and glycolipids is now recognized as a major frontier for
organic chemistry.Fundamental to the synthesis of such carbo-
hydrates and their derivatives is the selectivity of or -O-
glycoside bond formation which typically entails the coupling of
one nucleophilic (O-donating) glycoside to another electrophilic
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Here, we present a novel integrated approach to the de novo
catalytic asymmetric synthesis of saccharides uniting two proto-
cols: the enzymatic resolution of racemic acetoxypyrandpesth
a highly stereoselective palladium-catalyzed acetal bond formation

alsolated yield of unique stereocisomér0% Pd(OAc), P(OPh), DCM,
—30 °C; stereoselectivities were determined by chiral HPLC analysis.
¢ Enantiomeric excess before chromatogragh@oupled to racemid only.
€5% Pd(dbay, PPh, DCM, —10°C; diastereoselectivities were determined
from IH NMR. f Mixture of isomers.

onto this embryonic sugar (Scheme 1). Resulting from subsequentand 94% ee. Particularly rewarding were the still higher yields and

steps to elaborate the ring into a diversity of natural and unnatural

ee’s for anisyl nucleophileB and C and theortho-nitrobenzyl

sugars, a free hydroxyl group can be stereoselectively coupled agairalcoholD, useful mimics of benzyl linke#83applied to the solid-

to 1, giving rise to an iterative catalytic asymmetric saccharide
synthesis. A blank slate for saccharide synthesis, the versatility of
this cyclic enone platform has been appreciated for sometime.
Despite the widespread use of phenols as nucleophiles in the
palladium-catalyzed allylic substitution reactibaliphatic alcohols
have received scant attentidf. During early investigations,
however, we found that the substitution reaction of enantiomerically
pure 6-acetoxy-d-pyran-3(64)-one ()-18 with simple primary

phase synthesis of saccharidésn preliminary experiments to
apply the protocol to the solid-phase, photocleavahlienmobilized
onto phenolic polystyrene, was also coupled efficiently to racemic
1. Representative of Mucin-type glycosylation found in the glyco-
peptides of mammals and other eukarydfeadduct2F was also
prepared with excellent stereoselectivity.

Key to the feasibility of the protocol is the success of a first
iteration: a stereoselective coupling reaction of enantiopure glycosyl

and secondary aliphatic alcohols as solvent proceeded with nearlydonor with a sugar derivative. The results are illustrated in Table

complete retention of stereochemistty.

Efforts to improve the viability of this methodology resulted in
the coupling depicted in Table 1. The use of 10 mol % Pd(QAc)
and triphenyl phosphite in DCM at30 °C*? was found to convert
pyranone {)-1 into the benzyl alcohol addu@A in high yield

8714 m J. AM. CHEM. SOC. 2003, 125, 8714—8715

1. Initial attempts using the Pd(OA#P(OPh) catalyst system
failed, but, to our relief, use of R@ba)y/PPh successfully mediated
formation of the desired adduc®&G—2J. Primary alcoholG, a
6-deprotected glucopyranose, underwent coupling witX and
both R)-(—)-3 and ©§)-(+)-3'¢ to afford the stereoisomers of the

10.1021/ja0347538 CCC: $25.00 © 2003 American Chemical Society



COMMUNICATIONS

products with excellent yield (7796%) and diastereoselectivity Supporting Information Available: Experimental procedures and
(94—98%). Crucially, similar success was found with the more spectral data for all new compounds (PDF). This material is available
sterically demanding substrates 4-deprotected glucopyrahase free of charge via the Internet at http://pubs.acs.org.
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